[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 28, Issue 3 (spring 2018) ::
MEDICAL SCIENCES 2018, 28(3): 181-194 Back to browse issues page
Prediction of anti-cancer activity of 1,8-naphthyridin derivatives by using of genetic algorithm-stepwise multiple linear regression
Shahin Ahmadi * 1, Roohallah Khani 2 , Maryam Moghaddas 3
1- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran , ahmadi.chemometrics@gmail.com
2- medicinal chemistry, Department of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
3- Department of Chemistry, Safadasht Branch, Islamic Azad University, Safadasht, Iran
Abstract:   (344 Views)
Background: This paper compared the QSAR modeling of anti-cancer activity of compounds 1,4-Dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines and its derivatives using stepwise multiple linear regression (S-MLR) and combined genetic algorithm-multiple linear regression methods (GA-MLR(.
Materials and methods: A set of 100 compounds with certain anticancer activity were selected from literature. All molecules were “cleaned up” and the Allinger’s MM2 force field was used for energy minimization, the semi-empirical quantum method Austin method 1 (AM1) was used for geometry optimization using the Polak-Ribiere algorithm. A large number of theoretical descriptors for each molecule were calculated using Dragon software. In order to select the best set of descriptors for QSAR modeling, GA-MLR and Stepwise-MLR as two variable selection methods were used. First the random sampling of the training sets (80% of data) were randomly taken 20 times, and the remaining molecules (20 percent of the data) were used as prediction set for external validation. Among the random samples, one of the samples with high Q2CV, Q2cal, Q2test was selected as the best train and test set. Using this train set, QSAR modeling performed using GA-MLR and Stepwise-MLR methods.
Results: QSAR models by GA-MLR modeling had larger validated squared correlation coefficient than the obtained models by S-MLR.
Conclusion: According to the results, it could be concluded that the activity of similar compounds will be predictable by the obtained model.
 
Keywords: QSAR modeling, Anticancer activity, Variable selection, Stepwise-MLR, GA-MLR.
Keywords: QSAR modeling, Anticancer activity, Variable selection, Stepwise-MLR, GA-MLR.
Full-Text [PDF 476 kb]   (108 Downloads)    
Type of Study: Survey/Cross Sectional/Descriptive | Subject: Chemistry
Received: 2017/12/18 | Accepted: 2018/02/18 | Published: 2018/09/22
ENG-PDF [PDF 985 KB]  (31 Download)
References
1. Funatsu K, Miyao T, Arakawa M, Systematic generation of chemical structures for rational drug design based on QSAR models. Curr Comput Aided Drug Des 2011; 7: 1-9. [DOI:10.2174/157340911793743556]
2. Ahmadi S, Habibpour E, Application of GA-MLR for QSAR modeling of the arylthioindole class of tubulin polymerization inhibitors as anticancer agents. Anticancer Agents Med Chem 2017; 17: 552-65. [DOI:10.2174/1871520616666160811162105]
3. Ahmadi S, Ganji S, Genetic algorithm and self-organizing maps for QSPR study of some N-aryl derivatives as butyrylcholinesterase inhibitors. Curr Drug Discov Technol 2017; 13: 232-53. [DOI:10.2174/1570163813666160725114241]
4. Ahmadi S, Khazaei MR, Abdolmaleki A, Quantitative structure-property relationship study on the intercalation of anticancer drugs with ct-DNA. Med Chem Res 2014; 23:1148-61. [DOI:10.1007/s00044-013-0716-z]
5. Spiegel K, Magistrato A, Modeling anticancer drug–DNA interactions via mixed QM/MM molecular dynamics simulations. Org Biomol Chem 2006; 4: 2507-17. [DOI:10.1039/B604263P]
6. Goodarzi M, Dejaegher B, Vander Heyden Y, Feature selection methods in QSAR studies. J AOAC Int 2012; 95: 636–651. [DOI:10.5740/jaoacint.SGE_Goodarzi]
7. Gonzalez MP, Teran C, Saiz-Urra L, Teijeira M, Variable selection methods in QSAR: an overview. Curr Topics Med Chem 2008; 8: 1606–27. [DOI:10.2174/156802608786786552]
8. Leardi R, Genetic algorithms in chemometrics and chemistry: a review. J Chemometr 2001; 15: 559-69. [DOI:10.1002/cem.651]
9. Lucasius CB, Beckers MLM, Kateman G, Genetic algorithms in wavelength selection: a comparative study. Anal Chim Acta 1994; 286: 135-53. [DOI:10.1016/0003-2670(94)80155-X]
10. Shayanfar A, Ghasemi S, Soltani S, Asadpour-Zeynali K, Doerksen RJ, Jouyban A, Quantitative structure-activity relationships of imidazole-containing farnesyltransferase inhibitors using different chemometric methods. Med Chem 2013; 9: 434-48. [DOI:10.2174/1573406411309030014]
11. Bohari MH, Srivastava HK, Sastry GN, Analogue-based approaches in anti-cancer compound modelling: the relevance of QSAR models. Org Med Chem Lett 2011; 1: 1-12. [DOI:10.1186/2191-2858-1-3]
12. Bertoša B, Aleksić M, Karminiski-Zamola G, Tomić S, QSAR analysis of antitumor active amides and quinolones from thiophene series. Int J Pharm 2010; 394: 106-14. [DOI:10.1016/j.ijpharm.2010.05.014]
13. Tomita K, Tsuzuki Y, Shibamori K, Tashima M, Kajikawa F, Sato Y, et al. Synthesis and structure-activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents. Part1. J Med Chem 2002; 45: 5564-75. [DOI:10.1021/jm010057b]
14. Tsuzuki Y, Tomita K, Shibamori K, Sato Y, Kashimoto S, Chiba K, Synthesis and structure-activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents. Part 2. J Med Chem 2004; 47: 2097-109. [DOI:10.1021/jm0304966]
15. Tsuzuki Y, Tomita K, Sato Y, Shibamori K, Kashimoto S, Chiba K, Synthesis and structure-activity relationships of 3- substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphtyridines as novel antitumor agents. Bioorg Med Chem Lett 2004; 14: 3189-93. [DOI:10.1016/j.bmcl.2004.04.011]
16. Ahmadi S, Babaee E, khazaei MR, Application of self organizing maps and GA-MLR for the estimation of stability constant of 18-crown-6 ether derivatives with sodium cation. J Incl Phenom Macrocycl Chem 2014; 79: 141-49. [DOI:10.1007/s10847-013-0337-7]
17. Ahmadi S, Deligeorgiev TG, Vasilev A, Kubista M, The dimerizationtion study of some cationic monomethine cyanine dyes by chemometrics method. Russ J Phys Chem A 2012; 86: 1974-81. [DOI:10.1134/S0036024412130201]
18. Ahmadi S, Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-Crown-5 complexes with sodium cation. J Incl Phenom Macrocycl Chem 2012; 74: 57-66. [DOI:10.1007/s10847-010-9881-6]
19. Ahmadi S, A QSPR study of association constants of macrocycles toward sodium cation. Macroheterocycles 2012; 5: 23-31. [DOI:10.6060/mhc2012.110734a]
20. Ghasemi JB, Ahmadi S, Brown SD, A quantitative structure-retention relationship study for prediction of chromatographic relative retention time of chlorinated monoterpenes. Environ Chem Lett 2011; 9: 87-96 [DOI:10.1007/s10311-009-0251-9]
21. Ghasemi JB, Ahmadi S, Ayati M, QSPR modeling of stability constants of the Li-hemispherands complexes using MLR: a theoretical host-guest study. Macroheterocycles 2010; 3: 234-42. [DOI:10.6060/mhc2010.4.234]
22. Ghasemi JB, Ahmadi S, Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Ann Chim Rome 2007; 97: 69-83. [DOI:10.1002/adic.200690087]
23. Rogers D, Hopfinger AJ, Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure–property relationships J Chem Inf Comput Sci 1994; 34: 854-66. [DOI:10.1021/ci00020a020]
24. Cho SJ, Hermsmeier MA, Genetci algorithm guided selection: variable selection and subset selection. J Chem Inf Comput Sci 2002; 42: 927-36. [DOI:10.1021/ci010247v]
25. Myers RH, Classical and modern regression with applications. Boston: PWS-KENT Publishing company; 1990.
26. Hintze J, NCSS – Number Cruncher Statistical System. UT: NCSS: Kaysville; 2001.
27. Jaiswal M, Khadikar PV, Scozzafava A, Supuran CT, Carbonic anhydrase inhibitors: the first QSAR study on inhibition of tumor-associated isoenzyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett 2004; 14: 3283-90. [DOI:10.1016/j.bmcl.2004.03.099]
28. Shapiro S, Guggenheim B, Inhibition of oral bacteria by phenolic compounds part1 QSAR analysis using molecular connectivity Quant Struct Act Relat 1998; 17: 327-37.
29. Hemmer MC, Steinhauer V, Gasteiger J, Driving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 1999; 19: 151-64. [DOI:10.1016/S0924-2031(99)00014-4]
30. Gasteiger J, Sadowski J, Schuur J, Selzer P, Steinhauer L, Steinhauer V, Chemical information in 3D space. J Chem Inf Comput Sci 1996; 36: 1030-37. [DOI:10.1021/ci960343+]
31. Consonni V, Todeschini R, M. Pavan, Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 2002; 42: 682-92. [DOI:10.1021/ci015504a]
32. Consonni V, Todeschini R, Pavan M, Gramatica P, Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 2002; 42: 693-705. [DOI:10.1021/ci0155053]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA code


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi S, Khani R, Moghaddas M. Prediction of anti-cancer activity of 1,8-naphthyridin derivatives by using of genetic algorithm-stepwise multiple linear regression . MEDICAL SCIENCES. 2018; 28 (3) :181-194
URL: http://iau-tmuj.ir/article-1-1440-en.html


Volume 28, Issue 3 (spring 2018) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3790