[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 28, Issue 2 (winter 2018) ::
MEDICAL SCIENCES 2018, 28(2): 92-103 Back to browse issues page
Differentiation potential of human CD133 and CD34 positive hematopoietic stem cells into motor neuron- like cells; an in vitro study
Sepideh Alavi Moghaddam 1, Faezeh Faghihi * 2, Nasim Hayati Roodbari 3
1- MSC Cellular and Molecular Biology, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Assistant Professor Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. , faezefaghihi@yahoo.com
3- Associate Professor Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (140 Views)
Background: We were studied on differentiation potential of CD133+ and CD34+ hematopoietic stem cells into motor neuron like cells.
Materials and methods: CD133+ and CD34+ HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using immunocytochemistry and flow cytometery.
Results: Flow cytometery analysis revealed 98% and 95.7% CD133+ and CD34+ cells, respectively. By the end of the two-week differentiation protocol, CD133+ and CD34+ cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1, AChE, NF-H and Nestin was detected in 66.4%, 58.3%, 80.6%and 84.9% of CD133+ cells and 63.2%, 52.3%, 78.6% and 80.1% of CD34+ cells. T
Conclusion: Human UCB - CD133+ and CD34+HSCs are remarkably potent cell candidates to trans- differentiate into motor neuron-like cells, in vitro.
Keywords: CD133+, CD34+, Hematopoietic Stem Cell, Motor Neuron, Umbilical Cord Blood
Full-Text [PDF 1280 kb]   (36 Downloads)    
Type of Study: Experimental | Subject: Biology
Received: 2017/10/3 | Accepted: 2017/12/26 | Published: 2018/06/19
1. Anderson L, Burnstein RM, He X , Luce R, Furlong R, Foltynie T, et al. Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp Neurol 2007;204:512-24. [DOI:10.1016/j.expneurol.2006.12.025]
2. Akiyama Y, Radtke C, Honmou O, Kocsis JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002;39:229-36. [DOI:10.1002/glia.10102]
3. Reynolds BA, Weiss S .Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707-10. [DOI:10.1126/science.1553558]
4. Arien-Zakay H, Lecht Sh, Nagler A, Lazarovici Ph. Human Umbilical Cord Blood Stem Cells:Rational for Use as a Neuroprotectant in Ischemic Brain Disease. Int J Mol Sci 2010;10:3513-28. [DOI:10.3390/ijms11093513]
5. Raedt R, Boon P.Cell therapy for neurological disorders: A comprehensive review: Acta Neurol Belg 2005;105:158-70.
6. Lee H, Shamy G, Elkabets Y, Schofield CM, Harrsion NL, Panagiotakos G, et al. Directed Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Motoneurons. Stem Cells 2007;25:1931-9. [DOI:10.1634/stemcells.2007-0097]
7. Barati P, Darvishi M, Tiraihi T, Doroudi T. Neurogenic Differentiation of Rat Bone Marrow Stromal Cells by the Non Toxic Factors of Bioactive Substance as an Inducer. Shafaye khatam 2014;2:47-55. [DOI:10.18869/acadpub.shefa.2.2.47]
8. Fuchs E, Segre JA. Stem cells: a new lease on life. Cell 2000;100:143-55. [DOI:10.1016/S0092-8674(00)81691-8]
9. Butler MG, Menitove JE. Umbilical cord blood banking: an update. J Assist Reprod Genet 2011;28:669-76. [DOI:10.1007/s10815-011-9577-x]
10. Stanevsky A, Goldstein G, Nagler A. Umbilical cord blood transplantation: Pros, cons and beyond. Blood Rev 2009;23:199-204. [DOI:10.1016/j.blre.2009.02.001]
11. Van de Ven C, Collins D, Bradley MB. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol 2007;35:1753-65. [DOI:10.1016/j.exphem.2007.08.017]
12. Margaret A. Goodell, Katja B, Glenn P. Isolation and Functional Properties of Murine Hematopoietic Stem Cells that are Replicating In Vivo. J Exp Med 1996;183:1797-806. [DOI:10.1084/jem.183.4.1797]
13. Okada S, Nakauchi H, Nagayoshi K. In vivo and in vitro stem cell function of c-kit-and Sca-1-positive murine hematopoietic cells. Blood 1992;80:3044-50.
14. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988;241:58-62. [DOI:10.1126/science.2898810]
15. Quesenberry PJ. Stromal cells in long-term bone marrow cultures. In: Tavassoli M, editor. Handbook of the Hematopoietic Microenvironment. Clifton, NJ. Humana Press 1989;80:253-85. [DOI:10.1007/978-1-4612-4494-3_7]
16. Pelosi E, Castelli G, Testa U. Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cells Mol Dis 2012;49:20-8. [DOI:10.1016/j.bcmd.2012.02.007]
17. Civin CI, Strauss LC, Brovall C. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen de fi ned by a monoclonal antibody raised against KG-1a cells. J Immunol 1984;133:157-65.
18. Bhatia M, Wang JC, Kapp U. Purification of primitive human hematopoietic cells capable of repopulating immune-de fi cient mice. Proc Natl Acad Sci U S A 1997;94:5320-5. [DOI:10.1073/pnas.94.10.5320]
19. Krause DS, Fackler MJ, Civin CI. CD34: structure, biology, and clinical utility. Blood 1996;87:1-13.
20. Goodell MA, Rosenzweig M, Kim H. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997;3:1337-45. [DOI:10.1038/nm1297-1337]
21. Zanjani ED, meida-Porada G, Livingston AG. Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 1998;26:353-60.
22. Bhatia M, Bonnet D, Murdoch B. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998;4:1038-45. [DOI:10.1038/2023]
23. Simmons DL, Satterthwaite AB, Tenen DG. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol 1992;148:267-71.
24. Nielsen JS, McNagny KM . Novel functions of the CD34 family. J Cell Sci 2008;121:3683-92. [DOI:10.1242/jcs.037507]
25. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90:5002-12.
26. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997;90:5013-21.
27. Bauer N, Fonseca AV, Florek M, Freund D, J?szai J, Bornh?user M, et al. New insights into the cell biology of hematopoietic progenitors by studying prominin-1(CD133). Cells Tissues Organs 2008;188:127-38. [DOI:10.1159/000112847]
28. Yao J, Zhang T, Ren J, Yu M, Wu G. Effect of CD133/prominin-1 antisense oligodeoxynucleotide on in vitro growth characteristics of Huh-7 human hepatocarcinoma cells and U251 human glioma cells. Oncol Rep 2009;22:781-7.
29. Yasuda H, Tanaka K, Saigusa S, Toiyama Y, Koike Y, Okugawa Y, et al. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep 2009;22:709-17.
30. Yoshikawa S, Zen Y, Fujii T, Sato Y, Ohta T, Aoyagi Y, et al . Characterization of CD133+ parenchymal cells in the liver: Histology and culture. World J Gastroenterol 2009;15:4896-906. [DOI:10.3748/wjg.15.4896]
31. Zangiacomi V, Balon N, Maddens S, Lapierre V, Tiberghien P, Schlichter R, et al. Cord Blood-Derived Neurons Are Originated from CD133+/CD34 Stem/Progenitor Cells in a Cell-to-Cell Contact Dependent Manner. Stem Cells Dev 2008;17:1005-16. [DOI:10.1089/scd.2007.0248]
32. Kashihara Y, Kuno M, Miyata Y. Cell death of axotomized motoneurones in neonatal rats and its prevention by peripheral reinnervation. J Physiol 1987;135-48. [DOI:10.1113/jphysiol.1987.sp016526]
33. Rishi S, Tewarie N, Hurtado A. Stem Cell-Based Therapies for Spinal Cord Injury. J Spinal Cord Med 2009;32:105-14. [DOI:10.1080/10790268.2009.11760761]
34. Harris DT. Non-haematological uses of cord blood stem cells. Br J Haematol 2009;147:177-84. [DOI:10.1111/j.1365-2141.2009.07767.x]
35. Ichim TE, Solano F, Lara F, Paris E, Ugalde F, Paz Rodriguez J, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 2010;3:30-7. [DOI:10.1186/1755-7682-3-30]
36. Kang K, Kim S, Oh Y, Kim KY, Park HK, Song CH, et al. A 37-year-old spinal cord-injured female patient transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy 2005;7:368-73. [DOI:10.1080/14653240500238160]
37. Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, et al. Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci 2005;1049:67-83. [DOI:10.1196/annals.1334.008]
38. Chen SH, Chang FM, Tsai YC. Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Exp Neurol 2006;199:67-76. [DOI:10.1016/j.expneurol.2005.11.015]
39. Zhou G, Chen J, Lee S, Clarc T, Rowley JD, Wang SM. The pattern of gene expression in human CD34? stem/ progenitor cells. Proc Natl Acad Sci 2001;98:13966-71. [DOI:10.1073/pnas.241526198]
40. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cell for transplantation into unrelated recipients. N Engl J Med 1996;335:157-68. [DOI:10.1056/NEJM199607183350303]
41. Gluckman E, Broxmeyer HE, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical cord blood from an HLA-identical sibling. New Engl J Med 1989;321:1174-8. [DOI:10.1056/NEJM198910263211707]
42. Hafizi M, Atashi A, Bakhshandeh B, Kabiri M, Nadri S, Hosseini RH, et al. MicroRNAs as Markers for Neurally Committed CD133+/CD34+ Stem Cells Derived from Human Umbilical Cord Blood. Biochem Genet 2012;51:175-88. [DOI:10.1007/s10528-012-9553-x]
43. Zahir T, Chen YF, MacDonald JF, Leipzig N, Tator CH, Shoichet MS. Neural Stem/Progenitor Cells Differentiate In Vitro to Neurons by the Combined Action of Dibutyryl cAMP and Interferon-?. Stem Cells Dev 2009;18:10. [DOI:10.1089/scd.2008.0412]
44. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007;8:755-65. [DOI:10.1038/nrn2212]
45. Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ, Mehler MF. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci U S A 2002;10;99:16273-8. [DOI:10.1073/pnas.232586699]
46. Sanchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, et al. Expression of neural markers in humanumbilical cord blood. Exp Neurol 2001;171:109-15. [DOI:10.1006/exnr.2001.7748]
47. Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, et al. Retinoic acid- mediated induction of neurons and glial cells from human umbilical cord blood- derived hematopoietic stem cells. J Neur Res 2004;75:573-84. [DOI:10.1002/jnr.10789]
48. Chojnacki A, Weiss S. Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J Neurosci 2004;24:1088-9. [DOI:10.1523/JNEUROSCI.3302-04.2004]
49. Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med 2014;3:12. [DOI:10.1186/2001-1326-3-12]
50. Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 2003;40:65-79. [DOI:10.1016/S0896-6273(03)00565-8]
51. Maden M. Retinoid signaling in the development of the central nervous system. Nat Rev Neurosci 2002;3:843-53. [DOI:10.1038/nrn963]
52. Liqing Y, Jia G, Jiqing C, Ran G, Fei C, Jie K, et al. Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport 2011;22:370-3. [DOI:10.1097/WNR.0b013e3283469615]
53. Faghihi F, Mirzaei E, Sarveazad A, Ai J, Ebrahimi Barough S, Lotfi A, et al. Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells into Motorneuron-like Cells on Electrospun Gelatin Membrane. J Mol Neurosci 2014;55:845-53. [DOI:10.1007/s12031-014-0437-x]
54. Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002;177:265-75. [DOI:10.1006/exnr.2002.7980]
55. Lee SK, Paff SL. Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 2003;38:731-45. [DOI:10.1016/S0896-6273(03)00296-4]
56. Jiang JX, Choi RC, Siow NL, Lee HH, Wan DC, Tsim KW. Muscle induces neuronal expression of acetylcholinesterase in neuron-muscle co-culture: transcriptional regulation mediated by cAMP-dependent signaling. J Biol Chem 2003;278:35-44. [DOI:10.1074/jbc.M306320200]
57. Bartels CF, Zelinski T, Lockridge O. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism. Am J Hum Genet 1993;52:928-36.
58. Massoulié J, Perrier N, Noureddine H, Liang D, Bon S. Old and new questions about cholinesterases. Chem Biol Interact 2008;175:30-44. [DOI:10.1016/j.cbi.2008.04.039]
59. Ericson J, Thor S, Edlund T, Jessell TM, Yamada T. Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 1992;256:1555-60. [DOI:10.1126/science.1350865]
60. Eyer J, Leterrier JF. Influence of the phosphorylation state of neurofilament proteins on the interactions between purified filaments in vitro. Biochem J 1998;252:655-60. [DOI:10.1042/bj2520655]
61. Novitch BG, Chen AI, Jessell TM. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 2001;31:773-89. [DOI:10.1016/S0896-6273(01)00407-X]
62. Guérette D, Khan PA, Savard PE, Vincent M. Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol 2007;7:164. [DOI:10.1186/1471-2148-7-164]
63. Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organization. Histol Histopathol 2005;20:665-71.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alavi Moghaddam S, Faghihi F, Hayati Roodbari N. Differentiation potential of human CD133 and CD34 positive hematopoietic stem cells into motor neuron- like cells; an in vitro study. MEDICAL SCIENCES. 2018; 28 (2) :92-103
URL: http://iau-tmuj.ir/article-1-1401-en.html

Volume 28, Issue 2 (winter 2018) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.07 seconds with 31 queries by YEKTAWEB 3729