:: Volume 28, Issue 1 (spring 2018) ::
MEDICAL SCIENCES 2018, 28(1): 1-15 Back to browse issues page
Genome editing from bench to clinic by CRISPR/Cas9
Mohammad Reza Noori-Daloii * 1, Saeedeh Kavoosi 2, Nazanin Rahimi Rad 2
1- Professor PhD of Medical Molecular Genetics, Department of Medical Genetics, School of Medicine, Tehran University of Medical science, Tehran, Iran , nooridaloii@sina.tums.ac.ir
2- MSc in Molecular Genetics
Abstract:   (586 Views)
Background: Engineered molecular scissors invention beside their ability to conduct site-specific modification of the genome hold great promise for effective functional analyses of genes, genomes and epigenomes. These technologies could improve researchers’ understanding of the molecular underpinnings of disease states and facilitate novel medical genetic therapeutic applications. The CRISPR/Cas9 system’s simplicity, facile engineering and amenability to multiplexing make it the system of choice for many applications. CRISPR/Cas9 has been used to generate disease models to study genetic diseases. It is expected that in the near future researchers will refinement this technology in various aspects of the CRISPR/Cas9 system, including the system’s precision, delivery and control over the outcome of the on-targrt activity during repair process. Here, we discuss the CRISPR/Cas9 history, type of CRISPR systems, the status of this technology in the field of genome editing and its use in new treatments for diseases such as genetics, cancer, etc.
Keywords: Cystic genome editing, CRISPR/Cas9, Targeting specificity, Novel therapies
Full-Text [PDF 521 kb]   (145 Downloads)    
Type of Study: Review | Subject: Genetic
Received: 2017/12/5 | Accepted: 2019/01/9 | Published: 2018/04/1
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Please register for citation matching, verify an email address, and agree to the terms. Members may also deposit reference lists here too.
2. eXtyles Logo Noori-Daloii MR, Nejatizadeh A. MicroRNA in disease and health: Diagnostic and therapeutic potentials. Gene Therapy Development and Future Perspectives. Rijeka, Croatia: InTech. 2011:93-120.
3. Noori-Daloii MR, Vand Rajabpour F. Roles of miRNAs in gene expression regulation, apoptosis, diagnosis and treatment of cancer. Med Sci J Islamic Azad Univ Tehran Med Branch 2011;21:151-61.
4. Noori-Daloii MR. Medical molecular genetics in the third millennium. Tehran: Samer; 2012.
5. Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. Obstet Gynecol Surv 2015;70:612-4. [DOI:10.1097/01.ogx.0000472121.21647.38]
6. Noori-Daloii MR, ed. Emery's elements of medical genetics. 8th ed. Tehran,Iran: Jame-e-negar and Salemi Publication; 2017.
7. Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbial Rev 2015;39:428-41. [DOI:10.1093/femsre/fuv023]
8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23. [DOI:10.1126/science.1231143]
9. Scherz P. The mechanism and applications of CRISPR-Cas9. Natl Cathol Bioeth Q 2017;17:29-36. [DOI:10.5840/ncbq20171713]
10. Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med 2015;7:93. [DOI:10.1186/s13073-015-0215-6]
11. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A 2006;103:1498-503. [DOI:10.1073/pnas.0510046103]
12. Nordberg A, Minssen T, Holm SH, Horst M, Mortensen K, Møller BL. Taking the gene-editing revolution to the next level: An interdisciplinary view on challenges, threats and opportunities of CRISPR-Cas9 and related technologies (in preparation).
13. Noori-Daloii MR, Tabarestani S. Molecular genetics, diagnosis and treatment of breast cancer. J Sabzevar Univ Med Sci 2010;17:74-87.
14. Noori-Daloii MR, Abdollahzadeh R, Asadollahi K. Targeted genome editing with engineered nucleases-A new approach in gene therapy. J Sabzevar Univ Med Sci 2014:131-44.
15. Prakash V, Moore M, Yá-ez-Mu-oz RJ. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther 2016;24:465-74. [DOI:10.1038/mt.2016.5]
16. Paul DS, Soranzo N, Beck S. Functional interpretation of non‐coding sequence variation: concepts and challenges. Bioessays 2014;36:191-9. [DOI:10.1002/bies.201300126]
17. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014;32:551-3. [DOI:10.1038/nbt.2884]
18. Sachdeva M, Sachdeva N, Pal M, Gupta N, Khan IA, Majumdar M, et al. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther 2015;22:509-17. [DOI:10.1038/cgt.2015.54]
19. Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Making designer mutants in model organisms. Development 2014;141:4042-54. [DOI:10.1242/dev.102186]
20. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015;6:6244. [DOI:10.1038/ncomms7244]
21. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015;4:143-54. [DOI:10.1016/j.stemcr.2014.10.013]
22. Mizukami H, Mimuro J, Ohmori T, Sakata Y, Ozawa K. AAV vector-mediated liver gene therapy and its implementation for hemophilia. In: Gene therapy and cell therapy through the liver 2016:59-73. [DOI:10.1007/978-4-431-55666-4_6]
23. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015;17:213-20. [DOI:10.1016/j.stem.2015.07.001]
24. Voit RA, Hendel A, Pruett-Miller SM, Porteus MH. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Re 2013;42:1365-78. [DOI:10.1093/nar/gkt947]
25. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 2014;111:9591-6. [DOI:10.1073/pnas.1407473111]
26. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int 2014;2014:612823. [DOI:10.1155/2014/612823]
27. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol 2015;16:238. [DOI:10.1186/s13059-015-0799-6]
28. Soriano V. Hot News: Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. AIDS Rev 2017;19:167-72.
29. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 2014;3:e186. [DOI:10.1038/mtna.2014.38]
30. Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol Cell Neurosci 2017;82:157-66. [DOI:10.1016/j.mcn.2017.05.007]
31. Teo AK, Gupta MK, Doria A, Kulkarni RN. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab 2015;4:593-604. [DOI:10.1016/j.molmet.2015.06.006]
32. Noori-Daloii MR, Ebadi N. Pharmacogenomics and cancer stem cells. Med Sci J Islamic Azad Univ Tehran Med Branch 2015;25:1-15.
33. Guo D, Liu H, Ruzi A, Gao G, Nasir A, Liu Y, et al. Modeling Congenital Hyperinsulinism with ABCC8-Deficient Human Embryonic Stem Cells Generated by CRISPR/Cas9. Sci Rep 2017;7:3156. [DOI:10.1038/s41598-017-03349-w]
34. Wang G, Yang L, Grishin D, Rios X, Lillian YY, Hu Y, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nat Protoc 2017;12:88-103. [DOI:10.1038/nprot.2016.152]
35. Ou Z, Niu X, He W, Chen Y, Song B, Xian Y, et al. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Sci Rep 2016;6:32463. [DOI:10.1038/srep32463]
36. Diecke S, Jung SM, Lee J, Ju JH. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 2014;29:547-57. [DOI:10.3904/kjim.2014.29.5.547]
37. Noori-Daloii MR, Kavoosi S, Rahimi Rad N. CRISPR/Cas9: high throughput genome editing molecular tool. Med Sci J Islamic Azad Univ Tehran Med Branch 2017;27:223-36.
38. Rothkamm K, Krüger I, Thompson LH, Löbrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003;23:5706-15. [DOI:10.1128/MCB.23.16.5706-5715.2003]
39. Kim ST, Park J, Kim D, Kim K, Bae S, Schlesner M, et al. Questioning unexpected CRISPR off-target mutations in vivo. bioRxiv 2017:157925. Eid A, Mahfouz MM. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med 2016;48:e265.
40. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule–triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 2015;11:316-8. [DOI:10.1038/nchembio.1793]
41. Reyes AP, Lanner F. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 2017;144:3-7. [DOI:10.1242/dev.139683]

XML   Persian Abstract   Print

Volume 28, Issue 1 (spring 2018) Back to browse issues page