[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 30, Issue 1 (spring 2020) ::
MEDICAL SCIENCES 2020, 30(1): 51-58 Back to browse issues page
Investigating FGF11 gene transcription level in cancer cells among colorectal cancer patients
Golshan Khalafian1 , Maliheh Entezari 2, Maryam Bikhof Torbati3
1- MSc, Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Associate Professor, Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , mentezari@iautmu.ac.ir
3- Department of Biology Faculty of Science, Yadegar - e- Imam Khomeini (RAH) Shahre- Rey Branch, Islamic Azad University, Tehran , Iran
Abstract:   (2306 Views)
Background: Colorectal cancer (CRC) is the fourth leading cause of cancer-caused death around the world. Reports of the unnecessary transcription of family genes of the fibroblast growth factor in several types of cancer indicate the role of these factors in tumorgenesis and progression of cancer. Therefore, the level of FGF11 transcription was evaluated in colorectal cancer tumor tissues relative to the normal tissue adjacent to cancer.
Materials and methods: In this study, 30 tumor tissue samples and 30 adjacent tumor tissue samples were collected from patients with colorectal cancer among those referred to Imam Khomeini Hospital. After extracting the entire RNA from the samples and synthesizing cDNA, quantitative real-time PCR method was used to evaluate the level of FGF11 transcription in the mRNA level.
Results: The level of FGF11 transcription in cancer tissues was 1.55 times higher than in non-cancer tissues, but a significant difference was not found between the two healthy and tumor groups (P= 0.402). Increased FGF11 transcription in patients with stages III and IV (high stage) was significantly different from those with stages 0, I and II (low stage) (P=0.057). The transcription of this gene did not show a significant relationship with tumor grade (P= 0.193), age (P= 0.896), size of tumor (P= 0.428), and lymphatic invasion (P= 0.651).
Conclusion: Based on the results, increasing the FGF11 transcription in atages III and IV of colorectal cancer than that at stages 0, I and II may indicate the potential role of this gene in tumorigenesis of colorectal cancer, while further investigations are required in this regard.
Keywords: Colorectal cancer, FGF11, Biomarker
Full-Text [PDF 358 kb]   (973 Downloads)    
Semi-pilot: Experimental | Subject: Genetic
Received: 2019/12/3 | Accepted: 2019/04/16 | Published: 2020/04/15
References
1. Fakheri H, Janbabai G, Bari Z, Eshqi F. The epidemiologic and clinical-pathologic characteristics of colorectal cancers from 1999 to 2007 in Sari, Iran. Journal of Mazandaran University of Medical Sciences 2008;18:58-66. [In Persian]
2. Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta 2016;1866:106-20. [DOI:10.1016/j.bbcan.2016.07.001]
3. Rahimi Pordanjani S, Baeradeh N, Lotfi MH, Pourmohammadi B. Epidemiology of colorectal cancer: incidence, mortality, survival rates and risk factors. Razi J Med Sci 2016;23:41-50.
4. Arvelo F, Sojo F, Cotte C. Biology of colorectal cancer. Ecancermedicalscience 2015;9:520. [DOI:10.3332/ecancer.2015.520]
5. Benson AB, Venook AP, Cederquist L, Chan E, Chen Y-J, Cooper HS, et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2017;15:370-98. [DOI:10.6004/jnccn.2017.0036]
6. Grady WM, Markowitz SD. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig Dis Sci 2015;60:762-72. [DOI:10.1007/s10620-014-3444-4]
7. Nedaeinia R, Sharifi M, Avan A, Kazemi M, Nabinejad A, Ferns GA, et al. Inhibition of microRNA-21 via locked nucleic acid-anti-miR suppressed metastatic features of colorectal cancer cells through modulation of programmed cell death 4. Tumor Biol 2017;39:1010428317692261. [DOI:10.1177/1010428317692261]
8. Saebnia N, Sadeghizadeh M, Movahedi Motlagh F, Esmatabadi D, Javad M. A Review of Genes, Markers, and Methods in Predicting Colon Cancer Recurrence. J Police Med 2017;5:389-402.
9. Siravegna G, Bardelli A. Blood circulating tumor DNA for non-invasive genotyping of colon cancer patients. Mol Oncol 2016;10:475-80. [DOI:10.1016/j.molonc.2015.12.005]
10. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol 2012;6:140-6. [DOI:10.1016/j.molonc.2012.01.010]
11. Yun Y-R, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010;1:218142. [DOI:10.4061/2010/218142]
12. Sato T, Oshima T, Yoshihara K, Yamamoto N, Yamada R, Nagano Y, et al. Overexpression of the fibroblast growth factor receptor-1 gene correlates with liver metastasis in colorectal cancer. Oncol Reports 2009;21:211-6.
13. Jang J-H. Reciprocal relationship in gene expression between FGFR1 and FGFR3: implication for tumorigenesis. Oncogene 2005;24:945. [DOI:10.1038/sj.onc.1208254]
14. Hossain WA, Morest D. Fibroblast growth factors (FGF‐1, FGF‐2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunohistochemistry and antibody perturbation. J. Neurosci Res 2000;62:40-55. https://doi.org/10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L [DOI:10.1002/1097-4547(20001001)62:13.0.CO;2-L]
15. https://doi.org/10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L https://doi.org/10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L [DOI:10.1002/1097-4547(20001001)62:13.0.CO;2-L]
16. Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 2011;43:285-98. [DOI:10.1016/j.molcel.2011.06.020]
17. Hennessey JA, Wei EQ, Pitt GS. Fibroblast growth factor homologous factors modulate cardiac calcium channels. Circ Res 2013; 113:301215. [DOI:10.1161/CIRCRESAHA.113.301215]
18. Lee KW, Yim HS, Shin J, Lee C, Lee JH, Jeong JY. FGF11 induced by hypoxia interacts with HIF‐1α and enhances its stability. FEBS letters 2017;591:348-57. [DOI:10.1002/1873-3468.12547]
19. Verdier A-S, Mattei M-G, Lovec H, Hartung H, Goldfarb M, Birnbaum D, et al. Chromosomal mapping of two novel human FGF genes, FGF11andFGF12. Genomics 1997;40:151-4. [DOI:10.1006/geno.1996.4492]
20. Goetz R, Dover K, Laezza F, Shtraizent N, Huang X, Tchetchik D, et al. Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J Biol Chem 2009;284:17883-96. [DOI:10.1074/jbc.M109.001842]
21. Ye SB, Zhang H, Cai TT, Liu YN, Ni JJ, He J, et al. Exosomal miR‐24‐3p impedes T‐cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol 2016;240:329-40. [DOI:10.1002/path.4781]
22. Knowles HJ. Hypoxia-induced fibroblast growth factor 11 stimulates osteoclast-mediated resorption of bone. Calcif Tissue Int 2017;100:382-91. [DOI:10.1007/s00223-016-0228-1]
23. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 2013;105:849-59. [DOI:10.1093/jnci/djt101]
24. Hu S, Li L, Yeh S, Cui Y, Li X, Chang H-C, et al. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→ miRNA‐541→ androgen receptor (AR)→ MMP9 signaling. Mol Oncol 2015;9:44-57. [DOI:10.1016/j.molonc.2014.07.013]
25. Nguyen MT, Weinberg DS. Biomarkers in colorectal cancer screening. J Natl Compr Canc Netw 2016;14:1033-40. [DOI:10.6004/jnccn.2016.0109]
26. Fakheri H, Janbabai G, Bari Z, Eshqi F. The epidemiologic and clinical-pathologic characteristics of colorectal cancers from 1999 to 2007 in Sari, Iran. Journal of Mazandaran University of Medical Sciences 2008;18:58-66. [In Persian]
27. Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta 2016;1866:106-20. [DOI:10.1016/j.bbcan.2016.07.001]
28. Rahimi Pordanjani S, Baeradeh N, Lotfi MH, Pourmohammadi B. Epidemiology of colorectal cancer: incidence, mortality, survival rates and risk factors. Razi J Med Sci 2016;23:41-50.
29. Arvelo F, Sojo F, Cotte C. Biology of colorectal cancer. Ecancermedicalscience 2015;9:520. [DOI:10.3332/ecancer.2015.520]
30. Benson AB, Venook AP, Cederquist L, Chan E, Chen Y-J, Cooper HS, et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2017;15:370-98. [DOI:10.6004/jnccn.2017.0036]
31. Grady WM, Markowitz SD. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig Dis Sci 2015;60:762-72. [DOI:10.1007/s10620-014-3444-4]
32. Nedaeinia R, Sharifi M, Avan A, Kazemi M, Nabinejad A, Ferns GA, et al. Inhibition of microRNA-21 via locked nucleic acid-anti-miR suppressed metastatic features of colorectal cancer cells through modulation of programmed cell death 4. Tumor Biol 2017;39:1010428317692261. [DOI:10.1177/1010428317692261]
33. Saebnia N, Sadeghizadeh M, Movahedi Motlagh F, Esmatabadi D, Javad M. A Review of Genes, Markers, and Methods in Predicting Colon Cancer Recurrence. J Police Med 2017;5:389-402.
34. Siravegna G, Bardelli A. Blood circulating tumor DNA for non-invasive genotyping of colon cancer patients. Mol Oncol 2016;10:475-80. [DOI:10.1016/j.molonc.2015.12.005]
35. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol 2012;6:140-6. [DOI:10.1016/j.molonc.2012.01.010]
36. Yun Y-R, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010;1:218142. [DOI:10.4061/2010/218142]
37. Sato T, Oshima T, Yoshihara K, Yamamoto N, Yamada R, Nagano Y, et al. Overexpression of the fibroblast growth factor receptor-1 gene correlates with liver metastasis in colorectal cancer. Oncol Reports 2009;21:211-6.
38. Jang J-H. Reciprocal relationship in gene expression between FGFR1 and FGFR3: implication for tumorigenesis. Oncogene 2005;24:945. [DOI:10.1038/sj.onc.1208254]
39. Hossain WA, Morest D. Fibroblast growth factors (FGF‐1, FGF‐2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunohistochemistry and antibody perturbation. J. Neurosci Res 2000;62:40-55. https://doi.org/10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L [DOI:10.1002/1097-4547(20001001)62:13.0.CO;2-L]
40. https://doi.org/10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L https://doi.org/10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L [DOI:10.1002/1097-4547(20001001)62:13.0.CO;2-L]
41. Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 2011;43:285-98. [DOI:10.1016/j.molcel.2011.06.020]
42. Hennessey JA, Wei EQ, Pitt GS. Fibroblast growth factor homologous factors modulate cardiac calcium channels. Circ Res 2013; 113:301215. [DOI:10.1161/CIRCRESAHA.113.301215]
43. Lee KW, Yim HS, Shin J, Lee C, Lee JH, Jeong JY. FGF11 induced by hypoxia interacts with HIF‐1α and enhances its stability. FEBS letters 2017;591:348-57. [DOI:10.1002/1873-3468.12547]
44. Verdier A-S, Mattei M-G, Lovec H, Hartung H, Goldfarb M, Birnbaum D, et al. Chromosomal mapping of two novel human FGF genes, FGF11andFGF12. Genomics 1997;40:151-4. [DOI:10.1006/geno.1996.4492]
45. Goetz R, Dover K, Laezza F, Shtraizent N, Huang X, Tchetchik D, et al. Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J Biol Chem 2009;284:17883-96. [DOI:10.1074/jbc.M109.001842]
46. Ye SB, Zhang H, Cai TT, Liu YN, Ni JJ, He J, et al. Exosomal miR‐24‐3p impedes T‐cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol 2016;240:329-40. [DOI:10.1002/path.4781]
47. Knowles HJ. Hypoxia-induced fibroblast growth factor 11 stimulates osteoclast-mediated resorption of bone. Calcif Tissue Int 2017;100:382-91. [DOI:10.1007/s00223-016-0228-1]
48. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 2013;105:849-59. [DOI:10.1093/jnci/djt101]
49. Hu S, Li L, Yeh S, Cui Y, Li X, Chang H-C, et al. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→ miRNA‐541→ androgen receptor (AR)→ MMP9 signaling. Mol Oncol 2015;9:44-57. [DOI:10.1016/j.molonc.2014.07.013]
50. Nguyen MT, Weinberg DS. Biomarkers in colorectal cancer screening. J Natl Compr Canc Netw 2016;14:1033-40. [DOI:10.6004/jnccn.2016.0109]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalafian G, Entezari M, Bikhof Torbati M. Investigating FGF11 gene transcription level in cancer cells among colorectal cancer patients. MEDICAL SCIENCES 2020; 30 (1) :51-58
URL: http://tmuj.iautmu.ac.ir/article-1-1741-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 1 (spring 2020) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 35 queries by YEKTAWEB 4652