[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 28, Issue 3 (spring 2018) ::
MEDICAL SCIENCES 2018, 28(3): 212-219 Back to browse issues page
The pattern of antibiotic resistance within clinical isolates of Pseudomonas aeruginosa and detection of AmpC
Mahsa Jamshidi Gohar1 , Nahid Rahimi Fard2 , Seyed Reza Hosseini Doust 3
1- MSc student in department of Microbiology, Medical Sciences University Azad Islamic, Tehran/Iran
2- Iranian Food and drug Administration, Ministry of Health and Medical Education
3- in Department of Microbiology, Tehran Medical Sciences Islamic Azad University, Tehran/Iran , rhdoust@iaups.ac.ir
Abstract:   (4130 Views)
Background: Despite the improvements in hospital care and the introduction of a wide range of antimicrobial agents, Pseudomonas aeruginosa is also a common cause of infection in patients hospitalized in different wards of the hospital. Due to the rising resistance of this bacterium to antibacterial drugs, the importance of its resistance is increased. The enzyme β-lactamase AMP-C is a type of cephalosporinase coded on the chromosome of the bacterium. In many bacteria, induction of AMP-C enzymes can occur at high levels by many mutations. In this paper, the detection of AMP-C gene was reported in clinical isolates of Pseudomonas aeruginosa.
Materials and methods: 80 Pseudomonas aeruginosa bacteria, verified by gram stain and biochemical tests, were isolated from wound samples collected from patients with burning at burning hospital in Tehran. For identifying antibiotic resistance, in vitro susceptibility of 80 Pseudomonas aeruginosa isolates to 15 antimicrobial agents, includimg colistin, amoxicillin, ceftriaxone, cefixime, cefalotin, ciprofloxacin, amikacin, doxycyclin, ampicillin, trimethoprim, ceftazidime, gentamicin, cefotaxime, piperacilin and imipenem was performed by Kirby-Bauer’s disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI, 2016) guideline. PCR method was used to identify AMP-C gene in 80 Pseudomonas aeruginosa strains.
Results: Pseudomonas aeruginosa strains showed the highest resistance to cephalotin (100%), doxycycline (100%), cefixime (100%), amoxicillin (100%), ampicillin (100%), amikacin (100%) and teri-methaprime (100%). Highest sensitivity of Pseudomonas aeruginosa strains was observed to colistin (67.5%), gentamicin (32.5%), piperacillin (30%), ciprofloxacin (28.7%), imipenem (18.7%), ceftazidime (13.7%), ceftriaxone (11.2%) and cefotaxime (10%). AMP-C gene was detected in 5% of isolates.
Conclusion: According to the results of this study, in many Pseudomonas aeruginosa strains, the presence of all resistance genes in an isolate was not observed. Therefore, it can be hoped that β-lactamase enzymes are not coded in most isolates.
 
Keywords: AMP-C, Antibiotics resistance, P. aeruginosa, Clinical isolates.
Keywords: AMP-C, Antibiotics resistance, P. aeruginosa, Clinical isolates.
Full-Text [PDF 410 kb]   (1810 Downloads)    
Semi-pilot: Experimental | Subject: Microbiology
Received: 2018/02/14 | Accepted: 2018/05/7 | Published: 2018/09/22
ENG-PDF [PDF 720 KB]  (99 Download)
References
1. Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009;58:1133-48. [DOI:10.1099/jmm.0.009142-0]
2. Lambert P A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002;95:22-6.
3. Reza Hosseini Doust, Mehdi Saberi, Mohamad Javad Hosseini, Ashraf Mohabati Mobarez. Surveillance of current antibiotic resistance among clinical isolates S. aureus, E. coli and P. aeroginosa collected from five Iranian cities. JPHS 2013;1:175-83.
4. Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv Appl Microbiol 2014;86:1-40. [DOI:10.1016/B978-0-12-800262-9.00001-9]
5. Johnson JK, Smith G, Lee MS, Venezia RA, Stine OS, Nataro JP, et al. The Role of Patient-to-Patient Transmission in the Acquisition of Imipenem-Resistant Pseudomonas aeruginosa Colonization in the Intensive Care Unit. J Infect Dis 2009;200:900-5. [DOI:10.1086/605408]
6. Lister PD, Wolter DJ, Hanson ND. Antibacterial Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin Microbiol Rev 2009;22:582-610. [DOI:10.1128/CMR.00040-09]
7. Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, et al. The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes. Plos One 2012;7:e34067. [DOI:10.1371/journal.pone.0034067]
8. Chen SSP. Pseudomonas Infection Medication. In: Steele RW, ed. Medscape. Available in: https://emedicine.medscape.com/article/970904-overview. [Updated: Jul 25, 2017]
9. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006;19:403-34. [DOI:10.1128/CMR.19.2.403-434.2006]
10. Nazari Monazam A, Hosseini Doust SR, Mirnejad R. Prevalence Per and VEB beta-lactamase genes among Acinetobacte baumanni isolated from patients in Tehran by PCR. Iran J Med Microbiol 2014;8:28-35.
11. Bermudes H, Arpin C, Jude F, El Harrif Z, Bébéar C, Quentin C. Molecular epidemiology of an outbreak due to extended-spectrum beta-lactamase-producing enterobacteria in a French hospital. Eur J Clin Microbiol Infect Dis 1997;16:523-9. [DOI:10.1007/BF01708236]
12. Filloux A, Ramos JL. Pseudomonas methods and protocols. New York: Humana Press; 2014. [DOI:10.1007/978-1-4939-0473-0]
13. Aghazadeh M, Hojabri Z, Mahdian R, Nahaei MR, Rahmati M, Hojabri T, et al. role of efflux pumps: MexAB-OprM and MexXY(-OprA), AmpC cephalosporinase and OprD porin in non-metallo-beta-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients. Infection, genetics and evolution. Infect Genet Evol 2014;24:187-92. [DOI:10.1016/j.meegid.2014.03.018]
14. Lee JY, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-beta-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 2012;40:168-72. [DOI:10.1016/j.ijantimicag.2012.04.004]
15. Tam VH, Schilling AN, LaRocco MT, Gentry LO, Lolans K, Quinn JP, et al. Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2007;13:413-8. [DOI:10.1111/j.1469-0691.2006.01674.x]
16. Soleimani N, Aganj M, Ali L, Shokoohizadeh L, Sakinc T. Frequency distribution of genes encoding aminoglycoside modifying enzymes in uropathogenic E. coli isolated from Iranian hospital. BMC Res Notes 2014;7:842. [DOI:10.1186/1756-0500-7-842]
17. Babaii Kochaksaraii M, NasrolahiOmran A, Javid N, Shakeri F, Yazdi M, Ghaemi EA. Extended spectrum beta lactamase producing E. coli isolated from Gorgan, North of Iran. Med Lab J 2012;6:51-8.
18. Gomez MG, Carrión LG, Vilar B, Pijoán JI, Hernández JL, José Miguel Montejo Baranda. Bacteriemias por enterobacterias productoras de beta-lactamasas (BLEE, AmpC y carbapenemasas) asociación con los cuidados sanitarios y los pacientes oncológicos. Revista Espa-ola de Quimioterapia 2015;28:256-62.
19. Chance DL, Mawhinney TP. Carbohyrate sulfation effects on growth of Pseudomonas aeruginosa. Microbiology 2000;146:1717-25. [DOI:10.1099/00221287-146-7-1717]
20. Rafiee R, Eftekhar F, Tabatabaei SA, Minaee Tehrani D. Prevalence of Extended-spectrum and Metallo BetaLactamase production in AmpC Beta-Lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014;7:e16436. [DOI:10.5812/jjm.16436]
21. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E. Genotypic Identification of AmpC Beta-lactamases production in gram-negative bacilli isolates. Jundishapur J Microbiol 2014;7:e8556. [DOI:10.5812/jjm.8556]
22. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the hodge test and imipenem- EDTA Double disk synergy test for differentiating metallo bata lactamase producing isolates of Pseudomonas spp and Acinetobacter spp. J Clin Microbiol 2003;41:4623-9. [DOI:10.1128/JCM.41.10.4623-4629.2003]
23. Hackman HK, Osei Adjei G, Gordon A, Laryea E, Quaye S, Anison L, et al. Phenotypic Characterization of AmpC beta-lactamase among Cefoxitin Resistant Escherichia coli and Klebsiella pneumoniae Isolates in Accra, Ghana. J Biolo Agric Health 2013;3:102-6.
24. Bermudes H, Arpin C, Jude F, El Harrif Z, Bébéar C, Quentin C. Molecular epidemiology of an outbreak due to extended-spectrum beta-lactamase-producing enterobacteria in a French hospital. Eur J Clin Microbiol Infect Dis 1997;16:523-9. [DOI:10.1007/BF01708236]
25. Filloux A, Ramos JL. Pseudomonas methods and protocols. New York: Humana Press; 2014. [DOI:10.1007/978-1-4939-0473-0]
26. Lee JY, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-beta-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 2012;40:168-72. [DOI:10.1016/j.ijantimicag.2012.04.004]
27. Nazari A, Hosseini Doust R, Mirnejad R. Prevolence of per and V B beta-lactamase genes among Acinetobacter bumanni isolates frompatients in Tehran by PCR. Iran J Med Microbiol 2014;8:28-35.
28. Ahadi A, Sharif Zadeh A, Golshani Z. Identification of antibiotic resistance patterns of Pseudomonas aeruginosa isolated from patients admitted with multiple resistance. J Veterinary Lab Res 2012;4:119-22.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamshidi Gohar M, Rahimi Fard N, Hosseini Doust S R. The pattern of antibiotic resistance within clinical isolates of Pseudomonas aeruginosa and detection of AmpC . MEDICAL SCIENCES 2018; 28 (3) :212-219
URL: http://tmuj.iautmu.ac.ir/article-1-1443-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 3 (spring 2018) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645