[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 28, Issue 3 (spring 2018) ::
MEDICAL SCIENCES 2018, 28(3): 195-206 Back to browse issues page
Evaluating the differentiation potential of human chorion-derived mesenchymal stem cells into myoblast-like cells
Nikoo Bana , Faezeh Faghihi 1, Mansooreh Soleimani2 , Nasim Hayati Roodbari3
1- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran , Faghihi.f@iums.ac.ir
2- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
3- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (3743 Views)
Background: To restore the lost cells of patients diagnosed with Muscular Degenerative diseases, stem cell therapy has recently proved to be an effective strategy. Chorion is an ethically approved reservoir which contains mesenchymal stem cells with self- renewal properties and multilineage differentiation capacity. Therefore, the aim of this study was to evaluate the myogenic differentiation potential of human chorion-derived mesenchymal stem cells (C-MSCs) for the first time.
Materials and methods: Chorion was digested by using 0.3% Collagenase type II. Cells were characterized by using flowcytometry and differentiated into osteoblast and adipoblast lineages. To induce myogenic differentiation, C-MSCs were cultured in DMEM/F12 and 2% FBS supplemented with 10μM of 5-azacytidine overnight. Afterwards, the medium was replaced with DMEM/F12 supplemented with 10% FBS for two weeks. Real-time PCR and immunocytochemistry were used to evaluate the expression of myogenic markers.
Results: The expression of CD90, CD73 and CD44 antigen and their ability to differentiation into osteoblast and adipoblast lineages were confirmed. Although the expression of CTNT and MYH6 reduced second week, Real-time PCR results revealed significant upregulation of Desmin, MYH6 and Cardiac TroponinT at the end of the first week (P<0.05). Slight upregulation of MYOD and GATA-4 transcripts at first and second week were observed. ICC staining approved the expression of Desmin, cTnT and α-MHC.  
Conclusion: The results showed that C-MSCs were potent to differentiate into myoblast- like cells.
 
Keywords: Human chorion, Mesenchymal stem cells, 5-azacytidine, Myogenic differentiation.
Keywords: Human chorion, Mesenchymal stem cells, 5-azacytidine, Myogenic differentiation.
Full-Text [PDF 613 kb]   (2762 Downloads)    
Semi-pilot: Experimental | Subject: Molecular Biology
Received: 2017/07/24 | Accepted: 2017/11/29 | Published: 2018/09/22
ENG-PDF [PDF 1175 KB]  (91 Download)
References
1. Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G, et al. Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant 2007;16:159-69. [DOI:10.3727/000000007783464614]
2. Fuches E, Segre JA. Stem cells: a new lesson on life. Cell 2000;100:143-55. [DOI:10.1016/S0092-8674(00)81691-8]
3. 3- Chargé SB, Rudnicki MA. Cellular and Molecular Regulation of Muscle Regeneration. Physiol Rev 2004 84:209-38. [DOI:10.1152/physrev.00019.2003]
4. Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H. The biology of desmin filaments: how do mutations affect their structure assembly and organization. J Struct Biol 2004;148:3752. [DOI:10.1016/j.jsb.2004.04.003]
5. Chamberlain J, Rando T. Duchenne muscular dystrophy: advances in therapeutics. Marcel Dekker 2004:240-65 .
6. Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis. Biomed Res Int 2013;2013:561098. [DOI:10.1155/2013/561098]
7. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001;189:54-63. [DOI:10.1002/jcp.1138]
8. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2004;6:543-53. [DOI:10.1080/14653240410005366-1]
9. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from secondtrimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004;19:1450-6. [DOI:10.1093/humrep/deh279]
10. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000;2:477-88. [DOI:10.1186/ar130]
11. Campagnoli C, Roberts IA, Kumar S, Bennet PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver and bone marrow. Blood 2001;98:2396-402. [DOI:10.1182/blood.V98.8.2396]
12. Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003;88:845-52.
13. Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, et al. Human dental pulp stem cells--isolation and long term cultivation. Acta Medica (Hradec Kralove) 2007;50:195-201. [DOI:10.14712/18059694.2017.82]
14. Ryusuke Nakatsuka, Tadashige Nozaki, Yasushi Uemura, Yoshikasu Matsuoka, , Yutaka Sasaki, Mitsuko Shinohara, et al. 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol 2010;55:350-7. [DOI:10.1016/j.archoralbio.2010.03.003]
15. Faghihi F , Mirzaei E, Ai J , Lotfi A, Azam Sayahpour F , Ebrahimi Barough S, et al. Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems. Mol Neurobiol 2016;53:1862-72. [DOI:10.1007/s12035-015-9129-y]
16. Faghihi F, Mirzaei E, Sarveazad A, Ai J, Ebrahimi Barough S, Lotfi A, et al. Differentiation potential of human bone marrow mesenchymal stem cells into motorneuron-like cells on electrospun gelatin membrane. J Mol Neurosci 2015;55:845-53. [DOI:10.1007/s12031-014-0437-x]
17. Ai J, Mehrabani D. Are endometrial stem cells novel tools against ischemic heart failure in women?A hypothesis. Iran Red Crescent Med J 2010;12:73-5.
18. Rosenstrauch D, Poglajen G, Zidar N, Gregoric ID. Stem cell therapy for ischemic heart failure.Tex Heart Inst J 2005;32:339-47.
19. Li Y, Huard J. Differentiation of musclederived cells into myofibroblasts in injured skeletal muscle. Am J Pathol 2002;161:895-907. [DOI:10.1016/S0002-9440(10)64250-2]
20. Faghihi F, Papadimitropoulos A, Martin I, Baghban Nejad MR. Effect of Purmorphamine on Osteogenic Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Dynamic Culture System. Cell Mol Bioeng 2014;7:575-84. [DOI:10.1007/s12195-014-0343-x]
21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7. [DOI:10.1126/science.284.5411.143]
22. Li CD, Zhang WY, Li HL, Jiang XX. Identification of A multilinage Potential Mesenchymal Cell From Human Placenta. Placenta 2005;19. pii: S0143-4004(05)00226-2.
23. Witkowska-Zimny M, Wobble E. Perinatal sources of mesenchymal stem cells: Wharton's jelly, amnion and chorion, Cell Mol Biol Lett 2011;16:493-514. [DOI:10.2478/s11658-011-0019-7]
24. Ali Aghaei Shafi Abadi A, Seyyed Jafari SS. Differentiation of human Placenta-dived Chorionic Stem Cells. Journal Gums 2009;71:1-6.
25. Antonisis P, Ioannidou-Papagiannali E, Kaidoglou A, Charokopos N, Kalogeridis A, Kouzi-Koliakou K ,et al. Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thorac Cardiovasc Surg 2008;56:77-82. [DOI:10.1055/s-2007-989328]
26. Ishikawa H, Bischoff R, Holtzer H. Mitosis and intermediatesized filaments in developing skeletal muscle. J Cell Biol 1968;38:538555. [DOI:10.1083/jcb.38.3.538]
27. Zhao C, Andersen H, Ozyilmaz B, Ramaprabhu S, Pastorin G, Ho HK. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering. Nanoscale 2015;7:18239-49. [DOI:10.1039/C5NR04303D]
28. Faghihi F, Jalali H, Parivar K, Kajbafzadeh A, Roozafzoon R, Somayeh Ebrahimi- Barough, et al. Evaluation Of Differentiation Potential Of Endometrial- Versus Bone Marrow Drived Mesenchymal Stem Cells Into Myoblast-Like Cells. IJCRLS 2014;4:3992-7.
29. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007;5:57-63. [DOI:10.1186/1479-5876-5-57]
30. Edmondson DG, Olson EN. Helix-loophelix proteins as regulators of muscle-specific transcription. J Biol Chem 1993;268:755-7.
31. Aurade F, Pinset C, Chafey P, Gros F, Montarras D. Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype. Differentiation 1994;55:185-92. [DOI:10.1046/j.1432-0436.1994.5530185.x]
32. Eun Ji Gang, Ju Ah Jeong, Seung Hyun Hong, Soo Han Hwang, Seong Whan Kim, Il Ho Yang, et al. Skeletal Myogenic Differentiation of Mesenchymal Stem Cells Isolated from Human Umbilical Cord Blood. Stem cells 2004;22:617-24. [DOI:10.1634/stemcells.22-4-617]
33. Tanigawa G, Jarcho JA, Kass S, Solomon SD, Vosberg HP, Seidman JG, et al. "A molecular basis for familial hypertrophic cardiomyopathy: an alpha/beta cardiac myosin heavy chain hybrid gene". Cell 1990;62:9091-8. [DOI:10.1016/0092-8674(90)90273-H]
34. Sharon SY Wong, Harold S Bernstein. Cardiac regeneration using human embryonic
35. stem cells: producing cells for future therapy. Regen Med 2010;5:763-75. [DOI:10.2217/rme.10.52]
36. Voronova A, Coyne E, Madhoun A, Fair JV, Bosiljcic N, St-Louis C, et al. Hedgehog Signaling Regulates MyoD. Expression and Activity. J Biol Chem 2013;288:4389-404. [DOI:10.1074/jbc.M112.400184]
37. Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. "Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle". Circ Res 1991;69:1226-33. [DOI:10.1161/01.RES.69.5.1226]
38. Aungkura S, Pakpoom K, Kuneerat N, Yaowalak U, Sirikul M, Methichit Ch, et al. Cardiogenic and Myogenic Gene Expression in Mesenchymal Stem Cells After 5AzacytidineTreatment. Turk J Haematol 2013;30:115-21. [DOI:10.4274/Tjh.2012.0161]
39. Bel A, Messas E, Agbulut O, Richard P, Samuel JL, Bruneval P, et al. Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 2003;108:47-52. [DOI:10.1161/01.cir.0000089040.11131.d4]
40. Perrino C, Rockman HA. GATA4 and the two sides of gene expression reprogramming. Circ Res 2006;98:837-45. [DOI:10.1161/01.RES.0000217593.07196.af]
41. Hollweck T, Hagl C, Eissner G. Mesenchymal stem cells from umbilical cord tissue as potential therapeutics for cardiomyodegenerative diseases. Int J Mo1 Cell Med Summer 2012;1:119-32.
42. Thurisch B. Untersuchung der Funktion des Transkriptionsfaktors GATA-4 durch eine Mausmutante mit einem induzierbaren RNA-Interferenz System. . Dissertation: Humboldt- Universität Berlin; 1979.
43. Xu CH, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002;91:501-8. [DOI:10.1161/01.RES.0000035254.80718.91]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bana N, Faghihi F, soleimani M, Hayati Roodbari N. Evaluating the differentiation potential of human chorion-derived mesenchymal stem cells into myoblast-like cells . MEDICAL SCIENCES 2018; 28 (3) :195-206
URL: http://tmuj.iautmu.ac.ir/article-1-1441-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 3 (spring 2018) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645